Home
Class 12
PHYSICS
[" (1) "A],[" The potential energy of a ...

[" (1) "A],[" The potential energy of a particle oscillating on "],[x" -axis is given by "U=20+(x-2)^(2)" here "U" is in "],[" joule and "x" in metre.Total mechanical "],[" energy of the particle is "36J" ."],[" (i) State whether the motion of particle is "],[" simple harmonic or not "],[" (ii) Find the mean position "],[" (iii) Find the maximum K.E.of the particle "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The potential energy of a particle oscillating along x-axis is given as U=20+(x-2)^(2) Here, U is in joules and x in meters. Total mechanical energy of the particle is 36J . (a) State whether the motion of the particle is simple harmonic or not. (b) Find the mean position. (c) Find the maximum kinetic energy of the particle.

The potential energy of a particle oscillating along x-axis is given as U=20+(x-2)^(2) Here, U is in joules and x in meters. Total mechanical energy of the particle is 36J . (a) State whether the motion of the particle is simple harmonic or not. (b) Find the mean position. (c) Find the maximum kinetic energy of the particle.

The potential energy of a particle oscillating along x-axis is given as U=20+(x-2)^(2) Here, U is in joules and x in meters. Total mechanical energy of the particle is 36J . (a) State whether the motion of the particle is simple harmonic or not. (b) Find the mean position. (c) Find the maximum kinetic energy of the particle.

The potential energy of a particle oscillating on x-axis is given as U = 20 + (x-2)^(2) where .U. is in joules and .x. is in metres. Its mean position is

The potential energy of a particle oscillating on x-axis is given as U +20 +(x-2)^(2) . The mean position is at

The potential energy of a particle of mass 2 kg moving along the x-axis is given by U(x) = 4x^2 - 2x^3 ( where U is in joules and x is in meters). The kinetic energy of the particle is maximum at

The potential energy of a particle moving along y axis is given by U(y)= 3y^4+12y^2 ,(where U is in joule and y is in metre). If total mechanical energy is 15 joule, then limits of motion are

Potential energy of a particle along x-axis varies as U = - 30 + (X-2)^2 , where U is in joule and x is in meter. Hence the particle is in

Potential energy of a particle moving along x-axis under the action of only conservative force is given as U=10+4cos(4pi x) . Here, U is in Joule and x in metres. Total mechanial energy of the particle is 16 J. Choose the correct option.

Potential energy of a particle moving along x-axis under the action of only conservative force is given as U=10+4cos(4pi x) . Here, U is in Joule and x in metres. Total mechanial energy of the particle is 16 J. Choose the correct option.