Home
Class 11
MATHS
Given ("lim")(xvec0)(f(x))/(x^2)=2,w h e...

Given `("lim")_(xvec0)(f(x))/(x^2)=2,w h e r e[dot]` denotes the greatest integer function, then `("lim")_(xvec0)[f(x)]=0` `("lim")_(xvec0)[f(x)]=1` `("lim")_(xvec0)[(f(x))/x]` does not exist `("lim")_(xvec0)[(f(x))/x]` exists

Promotional Banner

Similar Questions

Explore conceptually related problems

Given ("lim")_(xvec0)(f(x))/(x^2)=2,w h e r e[dot] denotes the greatest integer function, then (a) ("lim")_(xvec0)[f(x)]=0 (b) ("lim")_(xvec0)[f(x)]=1 (c) ("lim")_(xvec0)[(f(x))/x] does not exist (d) ("lim")_(xvec0)[(f(x))/x] exists

Given ("lim")_(xvec0)(f(x))/(x^2)=2, \where\ [dot] denotes the greatest integer function, then (A) ("lim")_(xvec0)[f(x)]=0 (B) ("lim")_(xvec0)[f(x)]=1 (C) ("lim")_(xvec0)[(f(x))/x] does not exist (D) ("lim")_(xvec0)[(f(x))/x] exists

Evaluate: ("lim")_(xvec0)(sinx)/x,w h e r e[dot] represents the greatest integer function.

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

Evaluate: ("lim")_(xvec0)(1-cos2x)/(x^2)

If [dot] denotes the greatest integer function, then (lim)_(xvec0)x/a[b/x] b/a b. 0 c. a/b d. does not exist

Evaluate: ("lim")_(xvec0)(e^x+e^(-x)-2)/(x^2)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0