Home
Class 12
MATHS
Let C0 be a circle of radius 1. For n ge...

Let `C_0` be a circle of radius 1. For `n ge 1` let `C_n` be a circle whose area equals the are of a square inscribed in `C_(n-1)` Then `sum_(i=0)^(oo) Area C_i` equals (A) `pi^2` (B) `(pi-2)/pi^2` (C) `1/pi^2` (D) `pi^2/(pi-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(0) is equal to : (a) 0 (b) pi/6 (c) pi/2 (d) pi/3

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3

1.The inverse of cosine function is defined in the intervals (A) [ -pi , 0 ] (B) [ -pi/2,0 ] (C) [ 0,pi/2 ] (D) [ pi/2 , pi ]

The area of a square is equal to the area of a circle. The ratio between the side of the square and the radius of the circle is (a) sqrt(pi):1 (b) 1:sqrt(pi) (c) 1:pi (d) pi:1

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

The area of the circle that can be inscribed in a square of side 10 cm is (a) 40pi\ c m^2 (b) 30pi\ c m^2 (c) 100\ pi\ c m^2 (d) 25\ pi\ c m^2