Home
Class 10
MATHS
If A, B, C are acute angles then prove t...

If A, B, C are acute angles then prove that: `sin A /sin B+sinB/sinC+ sinC/sinA<=A/B+B/C+C/A<= tan A/ tan B+tanB/ tan C+tan C /tan A `

Promotional Banner

Similar Questions

Explore conceptually related problems

if A, B, C are acute positive angles, then : ((sinA + sinB)(sinA + sinC)(sinA + sinC))/(sinA sinB sinC) is :

If A,B,C be the angles ofa triangle then prove that (sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC .

Prove that a sinA - b sinB = c sin(A-B)

Show that sinA*sin(B-C)+sinB*sin(C-A)+sinC*sin(A-B)=0 .

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

In a Delta ABC, prove that (sinA+sinB)(sinB+sinC)(sinC+sinA)>sinAsinBsinC.

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.