Home
Class 12
MATHS
[" Let "f,g:[-1,2]rarr R" be continuous ...

[" Let "f,g:[-1,2]rarr R" be continuous functions which are twice differentiable on the interval "(-1,2)." Leth "],[" of fand "g" at the points "-1,0" and "2" be as given in the following table: "],[[x=-1,x=0],[(1)/(8)(x),(1)/(3)(x=2],[(8)/(8)(x),0])quad [1,x=2],[(8)/(8)(x)," three solutions in "(-3g),uu(0,2)],[" (B) "f(x)-3g'(x),=0" has exactly one solutions in "(-1,0)}],[" (C) "f(x)-3g'(x),=0" has exactly one solutions in "(0,2)],[" (D) "f(x)-3g'(x),=0" has exactly one solutions in "(-1,0)" and exactly two solutions in "(0,2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f,g:[-1,2]rarr RR be continuous functions which are twice differentiable on the interval (-1, 2). Let the values of f and g at the points –1, 0 and 2 be as given in the following table : x=-1 x=0 x=2 f(x) 3 6 0 g(x) 0 1 -1 In each of the intervals (-1,0) and (0, 2) the function (f – 3g)' never vanishes. Then the correct statement(s) is(are)

Let f,g:[-1,2]rarr RR be continuous functions which are twice differentiable on the interval (-1, 2). Let the values of f and g at the points –1, 0 and 2 be as given in the following table : x=-1 x=0 x=2 f(x) 3 6 0 g(x) 0 1 -1 In each of the intervals (-1,0) and (0, 2) the function (f – 3g)'' never vanishes. Then the correct statement(s) is(are)

Let f,g:[-1,2]rarr RR be continuous functions which are twice differentiable on the interval (-1, 2). Let the values of f and g at the points –1, 0 and 2 be as given in the following table : x=-1 x=0 x=2 f(x) 3 6 0 g(x) 0 1 -1 In each of the intervals (-1,0) and (0, 2) the function (f – 3g)'' never vanishes. Then the correct statement(s) is(are)

Statement-1 : f(x) = 0 has a unique solution in (0,pi). Statement-2: If g(x) is continuous in (a,b) and g(a) g(b) <0, then the equation g(x)=0 has a root in (a,b).

Let f (x) = x ^(2) - 2x - 3 , g (x)= f (|x|). h(x)=|g(x)| has three solutions g (x) =0 what will be the total solutions of :

Let f(x)=x+2|x+1|+x-1|dotIff(x)=k has exactly one real solution, then the value of k is 3 (b) 0 (c) 1 (d) 2

f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2)) then a)f(x) has exactly one point of minima b)f(x) has exactly one point of maxima c)f(x) is increasing in (0, (pi)/(2)) . d)f(x) is decreasing in (0, (pi)/(2)) .

Let f(x)=x+2|x+1|+2|x-1|* If f(x)=k has exactly one real solution,then the value of k is (a) 3 (b) 0(c)1(d)2

Let f(x)=x+2|x+1|+2|x-1|dot If f(x)=k has exactly one real solution, then the value of k is (a) 3 (b) 0 (c) 1 (d) 2

Let f(x)=x+2|x+1|+2|x-1|dot If f(x)=k has exactly one real solution, then the value of k is (a) 3 (b) 0 (c) 1 (d) 2