Home
Class 12
MATHS
Period of f(x) = cos (|sinx| - |cosx|) i...

Period of `f(x) = cos (|sinx| - |cosx|)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

Period of sinx + cosx:

Period of sinx + cosx:

Identify the correct statement the fundamental period of f(x)=cos(sinx)+cos(cosx) is pi

Column I: Function, Column II: Period f(x)="cos"(|sinx|-|cosx|) , p. pi f(x)="cos"(tanx+cotx)cos(tanx-cotx) , q. pi/2 f(x)=sin^(-1)(sinx)+e^(tanx) , r. 4/pi f(x)=sin^3xsin3x , s. 2pi

Fundamental period of the function f(x) = cos (sinx) + cos(cosx) is :