Home
Class 12
MATHS
lf vec b and vec c are two non-collinear...

lf `vec b` and `vec c` are two non-collinear vectors such that `vec a.(vec b+vec c)=4` and `vec a xx (vec b xx vec c)=(x^2-2x+6)vec b + (siny)vec c`, then the point (x,y) lies on

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a, vec b and vec c are non coplanar unit vectors such that vec a xx (vec b xx vec c) = (vec b + vec c)/sqrt2 , then

If vec(b) and vec(c) are two non-collinear vectors such that vec(a) || (vec(b) xx vec(c)) , then (vec(a) xx vec(b)).(vec(a) xx vec(c)) is equal to

If vec a, vec b, vec c are non coplanar vectors such that, vec b xx vec c = vec a, vec c xx vec a = vec b, vec a xx vec b = vec c , then |vec a + vec b + vec c| =

If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a, vec b , and vec c are vectors such that |vec b| = |vec c| , then {[(vec a + vec b) xx (vec a + vec c)] xx (vec b xx vec c)} . (vec b + vec c) =

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec a,vec b, and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)),vec b and vec c are non parallel,then prove that the angel between vec a and vec b is 3 pi/4

If vec a,vec b,vec c are vectors such that [vec a,vec b,vec c]=4 then [a xx b,b xx c,c xx a]=