Home
Class 11
MATHS
Prove that "^n Cr+^(n-1)Cr+...+^r Cr=^(n...

Prove that `"^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that ""^(n)C_(r)+""^(n)C_(r-1)=""^(n+1)C_(r) .

Prove that ""^nC_r+^nC_(r-1)=^(n+1)C_r

Prove that .^(n+1)C_(r+1)+^nC_r+^nC_(r-1)=^(n+2)C_(r+1)

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

Prove that .(r+1)*^n C_r-r*^n C_r+ ... +(-1)^r.^n C_r=(-1)^r.^(n-2)C_rdot

Prove that nC_(r)+n-1C_(r)+n-2C_(r)+.......+rC_(r)=n+1C_(1)

Show that .^nC_r+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_r