Home
Class 12
MATHS
if y=tanx+secx , prove that (d^2y)/(dx^2...

if `y=tanx+secx` , prove that `(d^2y)/(dx^2)= cosx/((1-sinx)^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tanx + sec x , prove that (d^2y)/(dx^2) = (cosx)/((1-sinx)^2)

If y = tan x + sec x , prove that (d^2y)/(dx^2) = (cosx)/((1-sinx)^2)

y=tan x+sec x. Prove that (d^2y)/(dx^2)=cosx/((1+sinx)^2 .

If y=(tan x+secx) , prove that (d^(2)y)/(dx^(2))=(cosx)/((1-sinx)^(2))

If y=tanx+secx , then prove that (d^(2)y)/(dx^(2))=(cosx)/((1-sinx)^(2))

If y=secx+tanx then prove that (d^2y)/(dx^(2))=cosx/((1-sinx)^(2)) .

If y=tanx+secx ,p rov e \ t h a t \ (d^2y)/(dx^2)=(cosx)/((1-sinx)^2)

Solve: (d^2y)/dx^2=cosx-sinx

Solve: (d^2y)/dx^2=cosx-sinx

If y=5cosx-3sinx, prove that (d^2y)/(dx^2)+y=0