Home
Class 11
PHYSICS
A planet of small mass m moves around th...

A planet of small mass `m` moves around the sun of mass `M` along an elliptrical orbit such that its minimum and maximum distance from sun are `r` and `R` respectively. Its period of revolution will be:

Promotional Banner

Similar Questions

Explore conceptually related problems

A planet of mass m moves around the Sun of mass Min an elliptical orbit. The maximum and minimum distance of the planet from the Sun are r_(1) and r_(2) , respectively. Find the relation between the time period of the planet in terms of r_(1) and r_(2) .

A planet of mass m moves around the Sun of mass Min an elliptical orbit. The maximum and minimum distance of the planet from the Sun are r_(1) and r_(2) , respectively. Find the relation between the time period of the planet in terms of r_(1) and r_(2) .

A planet of mass m moves along an ellipse around the sun of mass M so that its maximum and minimum distances from sun are a and b respectively. Prove that the angular momentum L of this planet relative to the centre of the sun is L=msqrt((2GMab)/((a+b)))

A planet of mass m is moving in an elliptical orbit about the sun (mass of sun = M). The maximum and minimum distances of the planet from the sun are r_(1) and r_(2) respectively. The period of revolution of the planet wil be proportional to :

A planet of mass m is moving in an elliptical orbit about the sun (mass of sun = M). The maximum and minimum distances of the planet from the sun are r_(1) and r_(2) respectively. The period of revolution of the planet wil be proportional to :

A planet of mass m is moving in an elliptical orbit about the sun (mass of sun = M). The maximum and minimum distances of the planet from the sun are r_(1) and r_(2) respectively. The period of revolution of the planet wil be proportional to :

A planet of mass m moves around the Sun along an elliptical path with a period of revolution T. During the motion, the planet's maximum and minimum distance from Sun is R and R/3 respectively. If T^2=alpha R^3 , Then the magnitude of constant alpha will be

A planet of mass m moves along an ellipse around the sum of mass M so that its maximum and minimum distances from sum are a and b respectively. Prove that the angular momentum L of this planet relative to the centre of the sun is L=msqrt((2GGMab)/((a+b)))

A planet of mass m moves along an ellipse around the sum of mass M so that its maximum and minimum distances from sum are a and b respectively. Prove that the angular momentum L of this planet relative to the centre of the sun is L=msqrt((2GMab)/((a+b)))