Home
Class 12
MATHS
The domain of definition of f(x)=sin^(- ...

The domain of definition of `f(x)=sin^(- 1)[2-4x^2]` is ([.] denotes the greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=sin^-1[2-4x^2] is ([.] denotes the greatest integer function)

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.