Home
Class 12
MATHS
Prove that cos (tan^(-1) (sin (cot^(-1) ...

Prove that `cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos (tan^(-1)(sin(cot^-1x))) =sqrt((x^2+1)/(x^2+2))

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

Prove that costan^(-1)sin cot^(-1)x=sqrt((x^2+1)/(x^2+2))

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

prove that cos tan ^(-1) ""sin cot ^(-1) ""x=((x^(2)+1)/(x^(2)+2))^(1/2)

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that : sin cot^(-1) tan cos^(-1) x=x