Home
Class 12
MATHS
f(x)={[|x|cos(1)/(x),x!=0],[0,x=0]" at "...

f(x)={[|x|cos(1)/(x),x!=0],[0,x=0]" at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)={[(cos x)^((1)/(x)),x!=0k,x=0k,x=0]} is continuos at x=0 then the value of k]}

If f(x)={[(cos x)^((1)/(sin x)),,x!=0],[K,,x=0]} is differentiable at x=0 Then K=

Examine the continuity of a function f(x)={{:(|x|"cos"(1)/(x)", if "x!=0),(0", if "x=0):} at x=0 .

Let f(x)={x^(2)|(cos)(pi)/(x)|,x!=0 and 0,x=0,x in R then f is

If f(x)={x^(a)cos(1/x),x!=0 and 0, x=0 is differentiable at x=0 then the range of a is

Examine the following functions for continuity: f(x) = {:{(x cos (1/x), x ne 0),(0, x = 0):} at x = 0

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

Examine the continuity of the following function at the indicated pionts. f(x)={{:(,x^(2) cos (1/x) , x ne 0),(,0 , x =0):}" at x=0"