Home
Class 12
MATHS
Show that the determinant |a^2+b^2+c^2b ...

Show that the determinant `|a^2+b^2+c^2b c+c a+a bb c+c a+a bb c+c a+a b a^2+b^c+c^2b c+c a+a bb c+c a+a bb c+c a+a b a^2+b^2+c^2|` is always non-negative. When is the determinant zero?

Promotional Banner

Similar Questions

Explore conceptually related problems

- aa bc a - b - c - - bb - c - c

The value of determinant |a-bb-cc-a b-cc-a a-b c-a a-bb-c| is equal to- a b c b. 2a b c c. 0 d. none

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

Find the factor of determinant |(a, b+c, a^2), (b, c+a, b^2), (c, a+b, c^2)|.

Prove that |b c-a^2c a-b^2a b-c^2-b c+c a+a bb c-c a+a bb c+c a-a b(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)|=3.(b-c)(c-a)(a-b)(a+b+c)(a b+b c+c a)

The value of determinant |b c-a^2a c-b^2a b-c^2a c-b^2a b-c^2b c-a^2a b-c^2b c-a^2a c-b^2| is a. always positive b. always negative c. always zero d. cannot say anything

The value of determinant |b c-a^2a c-b^2a b-c^2a c-b^2a b-c^2b c-a^2a b-c^2b c-a^2a c-b^2| is a. always positive b. always negative c. always zero d. cannot say anything