Home
Class 12
MATHS
f(x)={[(e^(1/x)-1)/(e^(1/x)+1),x!=0],[0,...

f(x)={[(e^(1/x)-1)/(e^(1/x)+1),x!=0],[0,x=0]" at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the differentiability of: f(x)={[x(e^x-1)/(e^x+1),x!=0],[0,x=0]:} at x=0

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 0,x=0 (a)is continuous at x=0 (b)is not continuous at x=0 (c)is not continuous at x=0, but can be made continuous at x=0 (d) none of these

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0, at x=0 ,f(x)=0 a. is continuous at x=0 b. is not continuous at x=0 c. is not continuous at x=0, but can be made continuous at x=0 (d) none of these

Examine the continuity of the following function at the indicated pionts. f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1), x ne 0),(,0, x =0):}" at x=0"

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .

Discuss the conttinuity of f(x) ={{:((x-1)/(e^((1)/(x-1))),x=0),(0,x=0):} at x=1.

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}