Home
Class 12
MATHS
f(x)={[(x-4)/(|x-4|),x!=4],[1,x=4]" at "...

f(x)={[(x-4)/(|x-4|),x!=4],[1,x=4]" at "x=4

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4, 0,x=4 ,at x=4

Let f(x)={((x-4)/(|x-4|)+a, xlt4),(a+b, x=4),((x-4)/(|x-4|)+b,x gt 4):} Then , f (x) is continuous at x = 4, when

Examine the continuity of the function 'f' at x = 4, if f(x) ={(|x-4|/(x-4)),(1):}, ((x ne 4),(x =4))

Let f(x)={(x-4)/(|x-4|)+a ,x 4 Then f(x) is continous at x=4 when

Find the values of a and b such that the function f defined by f(x)={:{((x-4)/(|x-4|)+a", if "xlt4),(a+b", if "x=4" is a"),((x-4)/(|x-4|)+b", if "xgt4):} continuous function at x=4 .

f(x)={(x-4)/(|x-4|)+a,quad if x<4a+b,quad if x=4(x-4)/(|x-4|)+b,quad if x is continuous at x=4, find a,b .

Examine the continuity of the function : f(x)={{:((|x-4|)/((x-4))", if "xne4),(0" , if "x=4):} at x = 4.