Home
Class 12
MATHS
" Find the value of "k," so that the fun...

" Find the value of "k," so that the function "f(x)={[(2^(x+2)-16)/(4^(x)-16),x!=2],[k,x=2]" is continuous at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

find the value of k, so that the function f(x)={((2^(x+2)-16)/(4^(x)-16)", if "x!=2),(k", if "x=2):} is continuous at x=2.

If f(x)={(2^(x+2)-16)/(4^(x)-16), if x!=2,k if x=2 is continuous at x=2, find k

If f(x)={((2^(x+2)-16)/(4^x-16),x!=2),(k, x=2):} is continuous at x=2 , find k .

If the function f(x)=(2^(x+2)-16)/(4^(x)-16) for x!=2;-A for x=2 is continuous at x=2 then A

f(x)={(2^(x+2)-16)/(4^(x)-16),quad if x!=2k,quad if x=2 is continuous at x=2, find k

If f(x)={(2^(x+2)-16)/(4^x-16) , if x!=2 , k if x=2 is continuous at x=2 , find k

If f(x)={(2^(x+2)-16)/(4^x-16),if x!=2k ,if f(x) is continuous a t x=2, find k

Find the value of 'k', such that the function : f(x) = {:{(2x^(x+2)-16)/(4^x -16), if x ne2),(k, if x =2):} is continuous at x =2

Find the value of k so that the function f(x) = {((2^(x+2) - 16)/(4^(x) - 16),"if",x ne 2),(" k","if",x = 2):} is continuous at x = 2.