Home
Class 11
MATHS
Solve the equation for x : log4+(1+1/(2x...

Solve the equation for `x : log4+(1+1/(2x))log3=log(3x+27)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation for x : log4+(1+1/(2x))log3=log(3^(1/x)+27)

Solve the equation for x : log4+(1+1/(2x))log3=log(3^(1/x)+27)

Solve the equation for x:log4+(1+(1)/(2x))log3=log(root(z)(3)+27)

log4+(1+(1)/(2x))log3=log(3^((1)/(x))+27)

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1