Home
Class 11
MATHS
lim(x->0) (sin(sinx)-sinx)/(ax^3+bx^5+c)...

`lim_(x->0) (sin(sinx)-sinx)/(ax^3+bx^5+c)=-1/12` then

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin(sinx))/x

lim_(x rarr0)(sin(sin x)-sin x)/(ax^(3)+bx^(5)+c)=-(1)/(12) then

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of a is

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of b is

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of b is

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of b is

lim_(h rarr0)(sin(x+h)-sinx)/(h)

L=lim_(x rarr0)(sin(sin x)-sin x)/(ax^(5)+bx^(3)+c)=-((1)/(12)) The value/values of a is

lim_(x to 0) (x^3 sin(1/x))/sinx

The value of lim_(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)) , is