Home
Class 11
MATHS
If log(1/3) |z+1| > log(1/3) |z-1| then ...

If `log_(1/3) |z+1| > log_(1/3) |z-1|` then prove that Re(z) < 0.

Promotional Banner

Similar Questions

Explore conceptually related problems

log_ (1/2) | z-2 |> log_ (1/2) | z |

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

The locus of the inequality log_(1//3) |z+ 1| gt log_(1//3) |z - 1| is

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .