Home
Class 12
MATHS
" show that "|[1,x,x^(2)],[x^(2),1,x],[x...

" show that "|[1,x,x^(2)],[x^(2),1,x],[x,x^(2),1]|=(1-x^(3))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants.Show that: det[[1,x,x^(2)x^(2),1,xx,x^(2),1]]=(1-x^(3))^(2)

By using properties of determinants , show that : {:[( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) ]:} =( 1-x^(3)) ^(2)

By using properties of determinants , show that : {:[( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) ]:} =( 1-x^(3)) ^(2)

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].