Home
Class 14
MATHS
sin^(4)theta+cos^(4)thetabar(alpha)...

sin^(4)theta+cos^(4)thetabar(alpha)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that :2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta) is independent of theta.

The value of 2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta)

Let m and M be the minimum and maximum values of 2sin^(2)theta+4cos(theta+alpha)sin theta sin alpha+cos2(theta+alpha) where 0<=theta<=(pi)/(4) and 0<=alpha<=(pi)/(4) then (m+M) equals to

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

Prove that : 2 sin^2 theta + 4 cos (theta + alpha) sin alpha sin theta + cos 2 (alpha + theta) is independent of theta.

The value of expression E=3(sin^(4)theta+cos^(4)theta)-2(sin^(6)theta+cos^(6)theta)+(sin(pi-alpha))/(sin alpha-cos alpha tan((alpha)/(2)))-cos alpha

If sin theta + cos theta = a " then " sin^(4) theta + cos^(4) theta =

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to