Home
Class 12
MATHS
Lim(n->oo) 1/n^3{1+3+6+......+(n(n+1))/2...

`Lim_(n->oo) 1/n^3{1+3+6+......+(n(n+1))/2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) 1/n^(3) { 1+3+6+...+ (n(n+1))/2} =

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

The value of Lim_(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is

lim_ (n rarr oo) ((1) / (n + 1) + (1) / (n + 2) + (1) / (n + 3) + ...... + (1) / (6n ))