Home
Class 12
MATHS
" 3."sin^(2)42^(@)-cos^(2)78^(@)=(sqrt(5...

" 3."sin^(2)42^(@)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

I : sin^(2) 42^(@) - sin^(2) 12^(@)=(sqrt(5)+1)/(8) II : 8 cos^(3) 10^(@) - 6 cos10^(@)= sqrt(3)

Prove that (i) "sin"^(2) 24^(@) - sin^(2) 6^(@) =((sqrt(5)-1))/(8) " "(ii) "sin"^(2) 72^(@) - cos^(2) 30^(@) =(sqrt(5)-1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

sin ^(2) 24 ^(@) - sin ^(2) 6^(@) = (sqrt5 -1)/(8).

Prove that cos^(2)48^(@)-sin^(2)12^(@)=((sqrt5+1))/(8) .