Home
Class 12
MATHS
(log(10)(x-3))/(log(10)(x^(2)-21))=(1)/(...

(log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x: a) (log_(10)(x-3))/(log_(10)(x^(2)-21)) = 1/2 b) log(log x)+log(logx^(3)-2)= 0, where base of log is 10. c) log_(x)2. log_(2x)2 = log_(4x)2 d) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3. e) If 9^(1+logx)-3^(1+logx)-210=0 , where base of log is 3.

Solve the following equations. (viii) (log10(x-3))/log_(10)(x^2-21)=1/2

log_(10)x-(1)/(2)log_(10)(x-(1)/(2))=log_(10)(x+(1)/(2))-(1)/(2)log_(10)(x+(1)/(8))

Solve |x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)

Solve: |x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

(x-2)^(log_(10)^(2)(x-2)+log_(10)(x-2)^(5)-12)=10^(2log_(10)(x-2))