Home
Class 12
MATHS
lim(x->2)(f(x)-f(2))/(x-2)=...

`lim_(x->2)(f(x)-f(2))/(x-2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R to R is defined by f(x)={{:(,(x-2)/(x^(2)-3x+2),"if "x in R-(1,2)),(,2,"if "x=1),(,1,"if "x=2):} "them " lim_(x to 2) (f(x)-f(2))/(x-2)=

If f:R to R is defined by f(x)={{:(,(x-2)/(x^(2)-3x+2),"if "x in R-(1,2)),(,2,"if "x=1),(,1,"if "x=2):} "them " lim_(x to 2) (f(x)-f(2))/(x-2)=

If f(x)=|x-2|+1 , evaluate lim_(xto2+)(f(x)-f(2))/(x-2) and lim_(xto2-)(f(x)-f(2))/(x-2) . What can you say about the existence of f' (x) at x = 2 ?

Let f(2)=4 and f'(2)=4 . Then lim_(x->2)(xf(2)-2f(x))/(x-2) is equal to

If (lim)_(x->2)(f(x-9))/(x-2)=3 then (lim)_(x->2)f(x), is

if f(2)=4,f'(2)=1 then lim_(x->2){xf(2)-2f(x)}/(x-2)

Evaluate: lim_(x rarr 2)(f(x)-f(2))/(x-2), "where" f(x)=x^(2)-4x

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

If f(2)=4 and f^(prime)(2)=1 , then find (lim)_(x->2)(x\ f(2)-2f\ (x))/(x-2) .