Home
Class 12
MATHS
lim(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x...

`lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

The value of lim_(xrarr0)(1^x+2^x+3^x+...+n^x)^(a//x)/n , is:

lim_(xrarr0)((1^(x)+2^(x)+3^(x)+…..+n^(x))/(n))^((a)/(x)) equals

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to