Home
Class 12
MATHS
f(n)=lim(x->0){(1+sinx/2)(1+sinx/2^2)......

`f(n)=lim_(x->0){(1+sinx/2)(1+sinx/2^2).......(1+sinx/2^n)}^(1/x)` then find `lim_(n->oo)f(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(n)=lim_(x->0){(1+sin(x/2))(1+sin(x/2^2)).......(1+sin(x/2^n))}^(1/x) then find lim_(n->oo)f(n)

If f(n)=(lim)_(xrarroo)((1+sinpi/2)(1+sinpi/(2^2))(1+sinpi/(2^n)))^(1/x) then (lim)_(nrarro)f(n)= 1 b. e c. 0 d. oo

If f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x)) then find lim_(ntooo) f(n).

If f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x)) then find lim_(ntooo) f(n).

Let f(x)= lim_(n->oo)(sinx)^(2n)

Evaluate: lim_(x->0)(e^(sinx)-(1+sinx))/({tan^(-1)(sinx)}^2)

f(x)=lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))..........(1+x^(2^(n-1))) then

Evaluate: lim_(n->0)(e^(sinx)-(1+sinx))/({tan^(-1)(sinx)}^2)

Evaluate: lim_(n->0)(e^(sinx)-(1+sinx))/({tan^(-1)(sinx)}^2)

Let f(x)=(lim)_(n->oo)(2x^(2n)sin1/x+x)/(1+x^(2n))\ then find :\ (lim)_(x->-oo)f(x)