Home
Class 12
MATHS
8hArr x arctg(1)/(2 pi pi)arcsin(pi)/(4 ...

8hArr x arctg(1)/(2 pi pi)arcsin(pi)/(4 pi)Y=[[3,2],[1,4]]" piar "2X+Y=[[1,0],[-3,2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9

The solutions of the equation sin x+2sin2x+sin3x=cos x+3cos2x+cos3x in the interval 0<=x<=2 pi, are (pi)/(8),(5 pi)/(8),(2 pi)/(3)(b)(pi)/(8),(5 pi)/(8),(9 pi)/(8),(13 pi)/(8)(1 pi)/(3),(9 pi)/(3),(2 pi)/(3),(13 pi)/(8) (d) (pi)/(8),(5 pi)/(8),(9 pi)/(3),(4 pi)/(3),(4 pi)/(3),(9 pi)/(3),(2 pi)/(3),(13 pi)/(8)(d)

Range of function f(x)=cot^(-1)(2x-x^2), is (a) [pi/4,(3pi)/2] (b) [0,pi/4] [0,pi/2] (d) [pi/4,pi]

The possible values of theta in (0, pi) such that sin (theta) + sin (4 theta) + sin (7 theta) = 0 are (1) (2 pi) / (9), (i) / (4 ), (4 pi) / (9), (pi) / (2), (3 pi) / (4), (8 pi) / (9) (2) (pi) / (4), (5 pi ) / (12), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (8 pi) / (9) (3) (2 pi) / (9 pi) ), (pi) / (4), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (35 pi) / (36) (4) (2 pi ) / (9), (pi) / (4), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (8 pi) / (9)

If y=tan^(-1)x+tan^(-1)(1/x)+sec^(-1)x , then y lies in the interval (a) [pi/2,pi)uu[pi,(3pi)/2) (b) [pi/2,(3pi)/2] (c)(0,pi) (d) [0,pi/2)uu[pi/2,pi)

1+sinx + sin^2(x) + .... = 4+2sqrt3, 0ltxltpi, x!=pi, then x = 1) (pi)/(3), (pi)/(4) 2) (pi)/(4), (pi)/(6) 3) (2 pi)/(5), (pi)/(6) 4) (pi)/(3), (2 pi)/(3)

Draw the graph of y= sqrt(2) sin (x+ (pi)/(4)) for the values of x= 0 , (pi)/(4) , (pi)/(2) ,(3pi)/(4) in [(pi)/(4) ,(3pi)/(4)] and find the maximum value of y.

lim_(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3)))/(pi-2x)^(4)