Home
Class 12
MATHS
[" 46.For the function "],[qquad f(x)=(x...

[" 46.For the function "],[qquad f(x)=(x)/(1+e^(1/x)),x!=0" and "f(0)=0],[" the left hand derivative at "0" is "],[" a) "1]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(x^(2)e^(1//x),x!=0),(0,x=0):} then left hand derivative at x=0 is:

if f(x)=e^(-(1)/(x^(2))),x!=0 and f(0)=0 then f'(0) is

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

The function f(x)=x*e^(-((1)/(|x|)+(1)/(x))) if x!=0 and f(x)=0 if x=0 then

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

Show that the function f(x)=(x)/(1+e^(1//x),x ne 0, f(0)= 0 is continuous at x = 0

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0