Home
Class 12
MATHS
If (e1, e2, e3) and (e'1, e'2, e'3) are ...

If `(e_1, e_2, e_3)` and `(e'_1, e'_2, e'_3)` are two sets of non-coplanar vectors such that `i=1, 2, 3` we have `e_i.e'_j={1, if i=j | 0, if i!=j}` then show that `[e_1 e_2 e_3][e'_1 e'_2 e'_3]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (e_1, e_2, e_3) and (e'_1, e'_2, e'_3) are two sets of non-coplanar vectors such that i=1, 2, 3 we have e_i.e'_j={{:(1, if i=j), ( 0, if i!=j):} then show that [e_1 e_2 e_3][e'_1 e'_2 e'_3]=1

If vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3 are two sets of vectors such that vec e_idot vec E_j=1,ifi=j and vec e_idot vec E_j=0a n difi!=j , then prove that [ (vec e_1, vec e_2 ,vec e_3)][ (vec E_1, vec E_2, vec E_3) ]=1.

If vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3 are two sets of vectors such that vec e_idot vec E_j=1,ifi=j and vec e_idot vec E_j=0a n difi!=j , then prove that [ (vec e_1, vec e_2 ,vec e_3)][ (vec E_1, vec E_2, vec E_3) ]=1.

If vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3 are two sets of vectors such that vec e_idot vec E_j=1,ifi=ja n d vec e_idot vec E_j=0a n difi!=j , then prove that [ vec e_1 vec e_2 vec e_3][ vec E_1 vec E_2 vec E_3]=1.

If vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3 are two sets of vectors such that vec e_idot vec E_j=1,ifi=ja n d vec e_idot vec E_j=0a n difi!=j , then prove that [ vec e_1 vec e_2 vec e_3][ vec E_1 vec E_2 vec E_3]=1.

If vec e_(1),vec e_(2),vec e_(3) and vec E_(1),vec E_(2),vec E_(3) are two sets of vectors such that vec e_(i)*vec E_(j)=1, if i=j and vec e_(i)*vec E_(j)=0 and if i!=j then prove that [vec e_(1)vec e_(2)vec e_(3)][vec E_(1)vec E_(2)vec E_(3)]=1

If e_(1) and e_(2) are the eccentricities of two conics with e_(1)^(2) + e_(2)^(2) = 3 , then the conics are

Suppose E_1, E_2 and E_3 be three mutually exclusive events such that P(E_i)=p_i" for " i=1, 2, 3 . P(none of E_1, E_2, E_3 ) equals

Suppose E_1, E_2 and E_3 be three mutually exclusive events such that P(E_i)=p_i" for " i=1, 2, 3 . P(none of E_1, E_2, E_3 ) equals

Suppose E_1, E_2 and E_3 be three mutually exclusive events such that P(E_i)=p_i" for " i=1, 2, 3 . P(none of E_1, E_2, E_3 ) equals