Home
Class 12
MATHS
A rectangular sheet of tin 45 cm by 2...

A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum ?

Promotional Banner

Similar Questions

Explore conceptually related problems

A rectangular sheet of tin 45cm by 24cm is to be made into a box without top,by cutting off squares from each corners and folding up the flaps.What should be the side of the square to be cut off so that the volume of the box is maximum possible?

A rectangular sheet of tin 45 cm x 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible.

A rectangular sheet of tin 45cm by 24cm is to be made into a box without top,by cutting off square from each corner and folding up the flaps.What should be the side of the square to be cut off so that the volume of the box is maximum?

A rectangular sheet of tin 45 cm by 24 cm is to made into a box without top, by cutting-off square from each other corner and folding up the flaps. What should be the side of the square to be cut-off so that the volume of the box is maximum?

A square sheet of tin of size 24 cm is to be made into a box without top by cutting off squares from each comer and folding up the flaps. What should be the side of the 'square to be cut off so that the volume of the box is maximum ?

A square sheet of tin of side 36 cm is to be made into a box without top by cutting off squares from each comer and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum ?

A square sheet of tin whose side is 18 cm to be made into a box without top by cutting off squares from each comer and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum ?