Home
Class 7
MATHS
" If "a=c^(2)+-b=a^(x)" and "c=b^(y)," p...

" If "a=c^(2)+-b=a^(x)" and "c=b^(y)," prove that "xyz=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b,b^(y)=c and c^(z)=a, prove that xyz=1

If a = b^(2x) , b = c^(2y) and c = a^(2z) , show that 8xyz = 1.

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

If a^(x)=b, b^(y)=c,c^(z)=a, prove that xyz = 1 where a,b,c are distinct numbers

If a^(x)=b, b^(y)=c,c^(z)=a, prove that xyz = 1 where a,b,c are distinct numbers

If a=b^(x),b=c^(y) and c=a^(z) , then the value of xyz is equal to (a)-1 (b)0 (c)1 (d)abc

If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

If a=b^(2x),=c^(2y) "and"c=a^(2z) , then the value of 8xyz is

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

if a,b,c are in G.P. and a^(x)=b^(y)=c^(z) prove that (1)/(x)+(1)/(z)=(2)/(y)