Home
Class 11
MATHS
Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(...

Prove that `(2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(a)^(oo) (dx)/(x^(4)sqrt(a^(2) + x^(2)))=(2-sqrt(2))/(3a^(4))

Prove that tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2) .

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

sqrt(x^(2)+x+4)+sqrt(x^(2)+x+1)=sqrt(2x^(2)+2x+4)

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

int(x^(4)-1)/(x^(2))sqrt(x^(4)+x^(2)+1)dx equal to (A) sqrt((x^(4)+x^(2)+1)/(x)+c(B)sqrt(x^(4)+2-(1)/(x^(2)))+c)sqrt((x^(4)-x^(2)+1)/(x))+c

int(dx)/(sqrt(16-4x^(2)))=?