Home
Class 14
MATHS
[sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)...

[sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)],[(a)9]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

Prove that sqrt(x^(-1)y)xxsqrt(y^(-1)z)xxsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1

Show : sqrt( x^-1y) times sqrt( y^-1z ) times sqrt( z^-1x) = 1

If (1)/(sqrt(x-1))+(1)/(sqrt(y-1))+(1)/(sqrt(z-1))gt0andx,y,z, are in G.P., then (logx^(2))^(-1),(logxz)^(-1),(logz^(2))^(-1) are in

If (1)/(sqrt(x-1))+(1)/(sqrt(y-1))+(1)/(sqrt(z-1))gt0andx,y,z, are in G.P., then (logx^(2))^(-1),(logxz)^(-1),(logz^(2))^(-1) are in