Home
Class 12
MATHS
" If "y=e^(sin^(-1)x)x(" and ")z=e^(-cos...

" If "y=e^(sin^(-1)x)x_(" and ")z=e^(-cos^(-1)x)," provethat "(dy)/(dz)=e^(pi/2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^("sin"^(-1)x)andz=e^(-"cos"^(-1)x) , prove that dy/(dz)=e^(pi//2) .

If y= e^(sin^(-1)x) and z=e^(-cos^(-1)x) , prove that the value of (dy)/(dz) independent of x.

If y=e^(x)cos x, prove that (dy)/(dx)=sqrt(2)e^(x)cos(x+(pi)/(4))

If y=sin^(-1)x,z=cos^(-1)sqrt(1-x^(2))," then: "(dy)/(dz)=

If y=(a^cos^((-1)x))/(1+a^cos^((-1)x)) and z=a^cos^((-1)x) , then (dy)/(dz) is equal to........

If y=(a^(cos^-1x))/(1+a^(cos^-1x)) and z= a^(cos^-1x) , then dy/dz=

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2