Home
Class 11
MATHS
x/(x^2-5x+9)lt=1...

`x/(x^2-5x+9)lt=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following inequations {:((i),(x-2)/(x^(2)-9)lt0,(ii),(x+1)(x-3)^(2)(x-5)(x-4)^(2)(x-2)lt0),((iii),((x-1)(x+2)^(2))/(-1-x)lt0,(iv),(1+x^(2))/(x^(2)-5x+6)<0):}

Solve the following inequations {:((i),(x-2)/(x^(2)-9)lt0,(ii),(x+1)(x-3)^(2)(x-5)(x-4)^(2)(x-2)lt0),((iii),((x-1)(x+2)^(2))/(-1-x)lt0,(iv),(1+x^(2))/(x^(2)-5x+6)<0):}

Let Z be the set of integers. If A={xepsilonZ:2^((x+2)(x^(2)-5x+6))=1] and B={xepsilonz:-3lt2x-1lt9} then the number of subsets of the set AxxB is

(2x) / (x ^ (2) -9) <= (1) / (x + 2)

Solve (5x+1)/((x+1)^2)lt 1

Solve (5x+1)/((x+1)^2)lt 1

Solve (5x+1)/((x+1)^2)lt 1

Solve (5x+1)/((x+1)^2)lt 1

Let A={x:xepsilonz and 2^((x+2)(x^2-5x+6))=1}, B={x:xepsilonz and -3lt2x-1lt9} . Find number of subsets of cartesian product AxxB (A) 2^18 (B) 2^10 (C) 2^15 (D) 2^20

Prove that 1 lt underset(0)overset(2)int((5-x)/(9-x^(2)))dx lt 6/5