Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that | 1 1 1 + 3x 1+ 3y 1 1 = 9 (3xyz + xy + y2 + zx) 1 1+ 32 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that 3 2 (a 1) 3 3 1 2a 1 a 2 1 a 2a 2a

Using properties of determinants prove that ((1,1,1+3x),(1+3y,1,1),(1,1+3z,1)=9(3xyz+xy+yz+zx)

Using prperties of determinants, prove that : |(1,1,1+3x),(1+3y,1,1),(1,1+3z,1)| = 9(3xyz + xy + yz + zx) .

Using properties of determinants prove that |(1,1, 1+3x),(1+3y,1,1),(1, 1+3z,1)| =9(3xyz+xy+yz+zx)

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants , prove that |(x^2+1,xy,zx),(xy,y^2+1,yz),(zx,yz,z^2+1)|=1+x^2+y^2+z^2

Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),(zx,(z+y)^(2),xy),(zy,xy,(z+x)^(2)):}|=2xyz(x+y+z)^(3) .

Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y^2+1,yz),(xz,yz,z^2+1)|=1+x^2+y^2+z^2

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)