Home
Class 12
MATHS
Determinant form of (x-y)(y-z)(z-x)(xy+y...

Determinant form of `(x-y)(y-z)(z-x)(xy+yz+zx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Determinant , form (x-y)(y-z)(z-x)(xy+yz+zx), of

By using properties of determinants , show that : {:|( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) |:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

By using properties of determinants , show that : {:[( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) ]:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

By using properties of determinants , show that : {:[( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) ]:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)

Using the properties of determinants, show that : |[[x^2, y^2, z^2],[yz, zx, xy],[x,y,z]]|= (x-y)(y-z)(z-x)(xy+yz+zx) .

Simplify- (x-y)/(xy)+(y-z)/(yz)+(z-x)/(zx)