Home
Class 12
MATHS
2tan^(-1)sqrt((b)/(a))=cos^(-1)((a-b)/(a...

2tan^(-1)sqrt((b)/(a))=cos^(-1)((a-b)/(a+b))

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=sin^(-1)(-(sqrt(2))/(2))+cos^(-1)(-(1)/(2)) and b=tan^(-1)(-sqrt(3))-cot^(-1)(-(1)/(sqrt(3))) ,then find a-b " and " a+b

2tan^(-1)(sqrt((a-b)/(a+b))tan((theta)/(2)))=cos^(-1)((a cos theta+b)/(a+b cos theta))

prove that 2tan^(-1)(sqrt((a-b)/(a+b))tan((theta)/(2)))=cos^(-1)((a cos theta+b)/(a+b cos theta))

Prove that : 2tan^(-1)(sqrt((a-b)/(a+b))tan""x/2)=cos^(-1)((acosx+b)/(a+bcosx)) .

2 tan ^(-1) (sqrt((a-b)/(a+b))tan""(x)/(2))=cos^(-1)""(acos x+b)/(a+b cos x)

The value 2tan^(-1)[sqrt((a-b)/(a+b))(tan theta)/(2)] is equal to cos^(-1)((a cos theta+b)/(a+b cos theta))(b)cos^(-1)((a+b cos theta)/(a cos theta+b))cos^(-1)((a cos theta)/(a+b cos theta)) (d) cos^(-1)((b cos theta)/(a cos theta+b))

Prove that: tan^(-1){(pi)/(4)+(1)/(2)(cos^(-1)a)/(b)}+tan{(pi)/(4)-(1)/(2)(cos^(-1)a)/(b)}=(2b)/(a)

Prove the following: tan[(pi)/(4)+(1)/(2)cos^(-1)((a)/(b))]+tan[(pi)/(4)-(1)/(2)cos^(-1)((a)/(b))]=(2b)/(a)

Prove that tan((pi)/(4)+(1)/(2)cos^(-1)((a)/(b)))+tan((pi)/(4)-(1)/(2)cos^(-1)((a)/(b)))=(2b)/(a)

Prove that tan{(pi)/(4)+(1)/(2) "cos"^(-1)(a)/(b)}+tan{(pi)/(4)-(1)/(2) cos^(-1)((a)/(b))}=(2b)/(a) .