Home
Class 11
MATHS
Assume that (lim)(thetavec1)f(theta) exi...

Assume that `(lim)_(thetavec1)f(theta)` exists and `(theta^2+theta-2)/(theta+3)lt=(f(theta))/(theta^2)lt=(theta^2+2theta-1)/(theta+3)` holds for certain interval containing the point `theta=-1` then `(lim)_(thetavec-1)f(theta)` is equal to `f(-1)` b. is equal to 1 c. is non-existent d. is equal to -1

Promotional Banner

Similar Questions

Explore conceptually related problems

Assume that lim_(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(theta+3)le(f(theta))/(theta^(2))le(theta^(2)+2theta-1)/(theta+3) holds for certain interval containing the point theta=-1 " then "lim_(thetararr-1) f(theta)

Assume that lim_(theta rarr1)f(theta) exists and (theta^(2)+theta-2)/(theta+3)<=(f(theta))/(theta^(2))<=(theta^(2)+2 theta-1)/(theta+3) holds for certain interval containing the point theta=-1 then lim_(theta rarr-1)f(theta) is equal to f(-1) b.is equal to 1c is non-existent d.is equal to -1

If: f(theta)=log((1+theta)/(1-theta)), then: f((2theta)/(1+theta^2))=

1-(sin^(2)theta)/(1+cos theta)+(1+cos theta)/(sin theta)-(sin theta)/(1-cos theta) equals

Let f(theta)=1/(tan^2theta){(1+tantheta)^3+(2+tantheta)^3+....+(10+tan theta)^3} - 10 tan theta Then, lim_(theta->pi/2)f(theta) is equal to

Let f(theta)=1/(tan^2theta){(1+tantheta)^3+(2+tantheta)^3+......+(10+tan theta)^3}-10 tan theta Then, lim_(theta->pi/2)f(theta) is equal to

Let f(theta)=(1)/(tan^(2)theta){(1+tan theta)^(3)+(2+tan theta)^(3)+......+(10+tan theta)^(3)}-10tan theta Then,lim_(theta rarr(pi)/(2))f(theta) is equal to