Home
Class 12
MATHS
Without using truth table, prove that [(...

Without using truth table, prove that `[(pvvq)^^~p]toq` is a tautology.

Text Solution

AI Generated Solution

To prove that the expression \([(p \lor q) \land \neg p] \to q\) is a tautology without using a truth table, we will use logical identities and laws step by step. ### Step-by-Step Solution: 1. **Start with the given expression**: \[ [(p \lor q) \land \neg p] \to q \] ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL LOGIC

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE 2 OR 3 MARKS EACH|24 Videos
  • MATHEMATICAL LOGIC

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE 3 MARKS EACH|4 Videos
  • LINEAR PROGRAMMING

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE|8 Videos
  • MATRICES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos

Similar Questions

Explore conceptually related problems

((pvvq)^^~p) to q

Without using truth table show that ~(p vvq)vv(~p^^q)-=~p

Using truth table prove that ~p ^^ q -=(p vv q) ^^ ~p

Without using truth tables,show that p^^(q vv ~ p)-=p^^q

Using truth table verify that ~(p vv q) -= ~p ^^ ~q

Using truth table ,prove that pharrq-=(p^^q)v(~p^^~q) .

prove that (p^^q) ^^~(pvvq) is a contradiction.

Show that (p^^q)vv(~p)vv(p^^~q) is a tautology

The given truth table is for