Home
Class 12
MATHS
If f (x)={:((cos x,-sin x,0),(sin x,cos...

If `f (x)={:((cos x,-sin x,0),(sin x,cos x,0),(0,0,1)):},"show that "(f(x))^(-1) = f(-x)`.

Text Solution

Verified by Experts

`|f(x)|=|(cos x,-sinx,0),(sinx,cos x,0),(0,0,1)|`
`= cos x(cos x - 0)+sin x(sin x - 0)+0`
` = cos^(2) x+sin^(2) x = 1 ne 0`
` :. (f(x))^(-1)`exists.
Consider `f (x)*(f(x))^(-1) = I`
`:. {:((cos x,-sin x,0),(sin x,cos x,0),(0,0,1)):} (f(x))^(-1) = {:((1,0,0),(0,1,0),(0,0,1)):}`
By `(cos x)R_(1)`, we get ,
` {:((cos ^(2)x,-sin xcos x,0),(sin x,cos x,0),(0,0,1)):} (f(x))^(-1) = {:((cos x,0,0),(0,1,0),(0,0,1)):}`
By `R_(1) +(sin x)R_(2)`, we get,
` {:((1,0,0),(sin x,cos x,0),(0,0,1)):} (f(x))^(-1) = {:((cos x,sin x,0),(0,1,0),(0,0,1)):}`
By `R_(2) - (sin x)R_(1)`, we get,
` {:((1,0,0),(0,cos x,0),(0,0,1)):} (f(x))^(-1) = {:((cos x,sin x,0),(-sin x cos x,cos^(2)x,0),(0,0,1)):}`
By `(1/(cos x)) R_(2)`, we get ,
` {:((1,0,0),(0,1,0),(0,0,1)):} (f(x))^(-1) = {:((cos x,sin x,0),(-sin x ,cosx,0),(0,0,1)):}`
`:. (f(x))^(-1)= {:((cos x,sinx,0),(-sin x,cos x,0),(0,0,1)):} `...(1)
Also, `f(-x)={:((cos(-x),-sin(-x),0),(sin(-x),cos(-x),0),(" "0," "0,1)):}`
`:.f(-x)={:((cosx,-sinx,0),(-sinx,cosx,0),(" "0," "0,1)):}`....(2)
Form (1) and (2) , we get,
`(f(x))^(-1) = f(-x)`.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|23 Videos
  • MATRICES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • MATHEMATICAL LOGIC

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS 2 MARKS EACH|10 Videos
  • MODEL QUESTION PAPER FOR PRACTICE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SECTION-D (Atempt any five of the following)|8 Videos

Similar Questions

Explore conceptually related problems

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

Let F (x) = [{:(cos x , -sin x , 0),(sin x , cos x , 0),(0 , 0, 1):}] , then

If F(x)=[[cos x,-sin x,0sin x,cos x,00,0,1]], then which of

if A=[[cos,sin x,0-sin x,cos x,00,0,1]]=f(x) then

Let F(x)=[cos x-sin x0sin x cos x0001] Show that F(x)F(y)=F(x+y)

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If f(x)=(cos3x-cos4x)/(x sin2x),x!=0,f(0)=(7)/(4) then f(x) at x=0 is