Home
Class 12
MATHS
In triangle ABC, prove that a(cosC-cosB...

In `triangle ABC`, prove that `a(cosC-cosB)=2(b-c)cos^2.(A)/(2)` .

Text Solution

Verified by Experts

By projection rule ,
`b=a cosC+c cos A` and `c=acos B +bcos A `
`therefore b-c=(acosC+c cos A)-(acos B +bcosA)=a(cos C-cosB )-(b-c)cosA`
`therefore (b-c)+(b-c)cosA=a(cos C-cos B)`
`therefore (b-c)(1+cosA)=a(cos C-cos B)`
`therefore (b-c)xx2cos^2.(A)/(2)=a(cos C -cos B)`
`therefore a(cos C-cos B)=2(b-c)cos^2.(A)/(2)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practise|44 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

In any triangle ABC , prove that a(cosB+cot(A/2).sinB)=b+c .

In DeltaABC , prove that: a(cosB+cosC)=2(b+c)sin^(2)A/2 .

In any Delta ABC, prove that :a(b cos C-c cos B)=b^(2)-c^(2)

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

Prove in any triangle ABC that (i) a(cos B+cos C)=2(b+c) "sin"^(2)(A)/(2) (ii) a(cos C- cosB)= 2(b-c )"cos"^(2)(A)/(2)

For any triangle ABC, prove that (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

In a triangle ABC, prove that (a)cos(A+B)+cos C=0(b)tan((A+B)/(2))=cot((C)/(2))

In any triangle ABC, prove that: (1+cos(A-B)cos C)/(1+cos(A-C)cos B)=(a^(2)+b^(2))/(a^(2)+c^(2))