Home
Class 12
MATHS
In triangle ABC , with the usual notatio...

In `triangle ABC` , with the usual notations , prove that `2{a sin^(2).(C)/(2)+csin^2.(A)/(2)}=a+c-b`

Text Solution

AI Generated Solution

To prove the equation \( 2 \left( a \sin^2 \left( \frac{C}{2} \right) + c \sin^2 \left( \frac{A}{2} \right) \right) = a + c - b \) in triangle \( ABC \), we will follow these steps: ### Step 1: Rewrite the sine squared terms Using the identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \), we can rewrite the sine squared terms in the left-hand side (LHS): \[ \sin^2 \left( \frac{C}{2} \right) = \frac{1 - \cos C}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practise|44 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos

Similar Questions

Explore conceptually related problems

In any o+ABC, prove that: 2{a sin^(2)(C)/(2)+csin^(2)(A)/(2)}=a+c-b

In any Delta ABC, prove that :2(a sin^(2)((C)/(2))+c sin^(2)((A)/(2)))=a+c-b

Prove that, (c+a-b)/(2)=a sin^(2)(C/2)+csin^(2)(A/2)

If any triangle ABC with usual notations prove c=a cos B + b cos A .

In Delta ABC , with usual notations prove that : b^(2) = c^(2) +a^(2) - 2 ca cos B .

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

If in triangle ABC , with usual notations , a=18,b=24,c=30 , then sin.(A)/(2) is equal to

In Delta ABC prove that 2(b cos^(2)((C)/(2))-c cos^(2)((B)/(2)))=a+b+c

In any triangle ABC, prove that: a cos((B+C)/(2))=(b+c)(sin A)/(2)

In a triangle ABC with usual notation,if a+b=3c, then tan((A)/(2))tan((B)/(2)) is equal to