Home
Class 12
MATHS
If -1le x le -(1)/(sqrt(2)) , then prove...

If `-1le x le -(1)/(sqrt(2))` , then prove that `sin^(-1)(2xsqrt(1-x^2))=-2pi+2cos^(-1)x`.

Text Solution

AI Generated Solution

To prove that \( \sin^{-1}(2x\sqrt{1-x^2}) = -2\pi + 2\cos^{-1}(x) \) for \( -1 \leq x \leq -\frac{1}{\sqrt{2}} \), we will follow these steps: ### Step 1: Start with the given equation We want to prove: \[ \sin^{-1}(2x\sqrt{1-x^2}) = -2\pi + 2\cos^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practise|44 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

sin^(-1)(xsqrt(x)),0 le x le 1

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=

Prove that : 2sin^(-1). ((2x )/(1+x^(2))), -1 le x lt 1

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1