Home
Class 12
MATHS
Find the principal of : (1) sin ^(-1)(...

Find the principal of :
(1) `sin ^(-1)((1)/(2))` (2) `tan^(-1)(-sqrt(3))` (3) `cos^(-1)(-(1)/(sqrt(2)))` (4) `sin^(-1)(-(1)/(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal values of the given inverse trigonometric functions, we will follow the standard ranges for each function. Let's solve each part step by step. ### Part 1: Find `sin^(-1)(1/2)` 1. **Set the equation**: Let \( y = \sin^{-1}\left(\frac{1}{2}\right) \). 2. **Apply the sine function**: This implies \( \sin(y) = \frac{1}{2} \). 3. **Find the angle**: The angle \( y \) for which \( \sin(y) = \frac{1}{2} \) in the range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) is \( y = \frac{\pi}{6} \). 4. **Conclusion**: Therefore, \( \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \). ### Part 2: Find `tan^(-1)(-sqrt(3))` 1. **Set the equation**: Let \( y = \tan^{-1}(-\sqrt{3}) \). 2. **Apply the tangent function**: This implies \( \tan(y) = -\sqrt{3} \). 3. **Find the angle**: The angle \( y \) for which \( \tan(y) = -\sqrt{3} \) in the range of \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \) is \( y = -\frac{\pi}{3} \). 4. **Conclusion**: Therefore, \( \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3} \). ### Part 3: Find `cos^(-1)(-1/sqrt(2))` 1. **Set the equation**: Let \( y = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) \). 2. **Apply the cosine function**: This implies \( \cos(y) = -\frac{1}{\sqrt{2}} \). 3. **Find the angle**: The angles \( y \) for which \( \cos(y) = -\frac{1}{\sqrt{2}} \) in the range of \( [0, \pi] \) are \( y = \frac{3\pi}{4} \). 4. **Conclusion**: Therefore, \( \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4} \). ### Part 4: Find `sin^(-1)(-1/2)` 1. **Set the equation**: Let \( y = \sin^{-1}\left(-\frac{1}{2}\right) \). 2. **Apply the sine function**: This implies \( \sin(y) = -\frac{1}{2} \). 3. **Find the angle**: The angle \( y \) for which \( \sin(y) = -\frac{1}{2} \) in the range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) is \( y = -\frac{\pi}{6} \). 4. **Conclusion**: Therefore, \( \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6} \). ### Summary of Principal Values: 1. \( \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \) 2. \( \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3} \) 3. \( \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4} \) 4. \( \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

Find the principal values of sin^(-1)((1)/(2)) (b) sin^(-1)(-(1)/(sqrt(2)))

Find the principal values of : (1) cos^(-1)((sqrt(3))/(2)) (2) sin^(-1)(-(1)/(sqrt(2))) (3) cot^(-1) (-(1)/(sqrt(3)))

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

1. sin^(-1) (-1/2) = 2. tan^(-1) (-sqrt3) =

Find the principal value of the following csc^(-1)(2)( ii) tan^(-1)(-sqrt(3))cos^(-1)((1)/(sqrt(2)))

Find the principal value of the following: (i) cosec^(-1)(2) (ii) tan^(-1) (-sqrt3) (iii) cos^(-1) (-(1)/(sqrt2))

Find the principal value of the following (i) sin^(-1).(1)/(2) (ii) tan ^(-1).(1)/sqrt(3) (iii) cot ^(-1)(-sqrt3)

Find the principal values of the following : (i) sin^(-1)(sqrt(3)) (ii) cot^(-1)(-sqrt(3)) (iii) cos^(-1)(-1(1)/(2)) (iv) sec^(-1)(-(2)/sqrt(3)) (v) tan^(-1)(-1) (vi) cosec ^(-1)(-1) .

Find the principal values of sin^(-1)((sqrt(3))/(2))(b)sin^(-1)(-(1)/(2))

NAVNEET PUBLICATION - MAHARASHTRA BOARD-TRIGONOMETRIC FUNCTIONS -Examples for Practise
  1. In any triangle ABC, prove that a(cosB+cot(A/2).sinB)=b+c.

    Text Solution

    |

  2. In any triangle ABC, prove that a sin A-b sin B -=c sin (A-B).

    Text Solution

    |

  3. In triangle ABC, if angle C=(pi)/(2) , then prove sin(A-B)=(a^2-b^2)/(...

    Text Solution

    |

  4. In a triangle A B C , if acosA=bcosB , show that the triangle is eithe...

    Text Solution

    |

  5. In a triangle ABC, prove that cot(A/2)+cot(B/2)+cot(C/2)=((a+b+c)/(b+...

    Text Solution

    |

  6. In traingle ABC , prove that cos ((A-B)/(2))=((a+b)/(c)sin.(C)/(2).

    Text Solution

    |

  7. Find the principal of : (1) sin ^(-1)((1)/(2)) (2) tan^(-1)(-sqrt(3)...

    Text Solution

    |

  8. Find the values of : (1) cos^(-1)((1)/(2))+tan^(-1)((1)/sqrt(3)) (...

    Text Solution

    |

  9. Find the value of : (1) sin^(-1)(sin.(5pi)/(6)) (2) cos^(-1)(cos.(...

    Text Solution

    |

  10. Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x.

    Text Solution

    |

  11. सिद्ध कीजिए कि tan^(-1)""(1)/(2)+tan^(-1)""(2)/(11)=tan^(-1)""(3)/(4)

    Text Solution

    |

  12. If sin(sin^(-1)1/5+cos^(-1)x)=1, then find the value of xdot

    Text Solution

    |

  13. Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3.

    Text Solution

    |

  14. Prove that : tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/3+tan^(-1)1/8=pi/4

    Text Solution

    |

  15. Prove that sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)

    Text Solution

    |

  16. Prove that:cos^(-1)(12)/(13)+sin^(-1)3/5=sin^(-1)(56)/(65)

    Text Solution

    |

  17. Prove that:2sin^(-1)3/5=tan^(-1)(24)/7

    Text Solution

    |

  18. Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4...

    Text Solution

    |

  19. If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

    Text Solution

    |

  20. If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4), then find the value of x.

    Text Solution

    |