Home
Class 12
MATHS
If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/...

If `tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4)` , find x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{x-1}{x-2}\right) + \cot^{-1}\left(\frac{x+2}{x+1}\right) = \frac{\pi}{4} \), we can follow these steps: ### Step 1: Rewrite the cotangent inverse We know that \( \cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right) \). Therefore, we can rewrite the equation as: \[ \tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{1}{\frac{x+2}{x+1}}\right) = \frac{\pi}{4} \] This simplifies to: \[ \tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4} \] ### Step 2: Use the tangent addition formula Using the formula \( \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \) when \( ab < 1 \), we can set: \[ a = \frac{x-1}{x-2}, \quad b = \frac{x+1}{x+2} \] Thus, we have: \[ \tan^{-1}\left(\frac{\frac{x-1}{x-2} + \frac{x+1}{x+2}}{1 - \frac{x-1}{x-2} \cdot \frac{x+1}{x+2}}\right) = \frac{\pi}{4} \] This implies: \[ \frac{\frac{x-1}{x-2} + \frac{x+1}{x+2}}{1 - \frac{x-1}{x-2} \cdot \frac{x+1}{x+2}} = 1 \] ### Step 3: Simplify the expression Now, we need to simplify the numerator and denominator: 1. **Numerator**: \[ \frac{x-1}{x-2} + \frac{x+1}{x+2} = \frac{(x-1)(x+2) + (x+1)(x-2)}{(x-2)(x+2)} \] Expanding this gives: \[ (x^2 + 2x - x - 2) + (x^2 - 2x + x - 2) = 2x^2 - 4 \] So, the numerator becomes: \[ \frac{2x^2 - 4}{(x-2)(x+2)} \] 2. **Denominator**: \[ 1 - \frac{(x-1)(x+1)}{(x-2)(x+2)} = \frac{(x-2)(x+2) - (x^2 - 1)}{(x-2)(x+2)} \] Simplifying gives: \[ \frac{x^2 - 4 - x^2 + 1}{(x-2)(x+2)} = \frac{-3}{(x-2)(x+2)} \] ### Step 4: Set up the equation Now we can set up the equation: \[ \frac{2x^2 - 4}{(x-2)(x+2)} \cdot \frac{(x-2)(x+2)}{-3} = 1 \] This simplifies to: \[ \frac{2x^2 - 4}{-3} = 1 \] Multiplying both sides by -3 gives: \[ 2x^2 - 4 = -3 \] Thus: \[ 2x^2 = 1 \quad \Rightarrow \quad x^2 = \frac{1}{2} \quad \Rightarrow \quad x = \pm \frac{1}{\sqrt{2}} \] ### Final Answer Therefore, the values of \( x \) are: \[ x = \frac{1}{\sqrt{2}} \quad \text{or} \quad x = -\frac{1}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)((x-2)/(x-4))+tan^(-1)((x+2)/(x+4))=(pi)/(4) , find the value of 'x'.

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4) then find the value of x

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4), then find the value of x.

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

If tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=(pi)/(4) ,then find the value of x .

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

If tan^(-1)((x-2)/(x-4))+tan^(-1)((x+2)/(x+4))=pi/4 , find the value of x .

If tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),x in(0,1), then (x^(4)+(1)/(x^(4))) is equal to

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

NAVNEET PUBLICATION - MAHARASHTRA BOARD-TRIGONOMETRIC FUNCTIONS -Examples for Practise
  1. In any triangle ABC, prove that a(cosB+cot(A/2).sinB)=b+c.

    Text Solution

    |

  2. In any triangle ABC, prove that a sin A-b sin B -=c sin (A-B).

    Text Solution

    |

  3. In triangle ABC, if angle C=(pi)/(2) , then prove sin(A-B)=(a^2-b^2)/(...

    Text Solution

    |

  4. In a triangle A B C , if acosA=bcosB , show that the triangle is eithe...

    Text Solution

    |

  5. In a triangle ABC, prove that cot(A/2)+cot(B/2)+cot(C/2)=((a+b+c)/(b+...

    Text Solution

    |

  6. In traingle ABC , prove that cos ((A-B)/(2))=((a+b)/(c)sin.(C)/(2).

    Text Solution

    |

  7. Find the principal of : (1) sin ^(-1)((1)/(2)) (2) tan^(-1)(-sqrt(3)...

    Text Solution

    |

  8. Find the values of : (1) cos^(-1)((1)/(2))+tan^(-1)((1)/sqrt(3)) (...

    Text Solution

    |

  9. Find the value of : (1) sin^(-1)(sin.(5pi)/(6)) (2) cos^(-1)(cos.(...

    Text Solution

    |

  10. Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x.

    Text Solution

    |

  11. सिद्ध कीजिए कि tan^(-1)""(1)/(2)+tan^(-1)""(2)/(11)=tan^(-1)""(3)/(4)

    Text Solution

    |

  12. If sin(sin^(-1)1/5+cos^(-1)x)=1, then find the value of xdot

    Text Solution

    |

  13. Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3.

    Text Solution

    |

  14. Prove that : tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/3+tan^(-1)1/8=pi/4

    Text Solution

    |

  15. Prove that sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)

    Text Solution

    |

  16. Prove that:cos^(-1)(12)/(13)+sin^(-1)3/5=sin^(-1)(56)/(65)

    Text Solution

    |

  17. Prove that:2sin^(-1)3/5=tan^(-1)(24)/7

    Text Solution

    |

  18. Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4...

    Text Solution

    |

  19. If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

    Text Solution

    |

  20. If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4), then find the value of x.

    Text Solution

    |