Home
Class 12
MATHS
In triangle ABC, sin((A)/(2))sin((C)/(2)...

In `triangle ABC, sin((A)/(2))sin((C)/(2))=sin((B)/(2))` and '2s' is the perimeter of the triangle. Then the value of s is

A

b

B

2b

C

3b

D

4b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given in triangle ABC where \( \sin\left(\frac{A}{2}\right) \sin\left(\frac{C}{2}\right) = \sin\left(\frac{B}{2}\right) \), and where \( 2s \) is the perimeter of the triangle, we need to find the value of \( s \). ### Step-by-Step Solution: 1. **Understand the Given Information**: We have the equation: \[ \sin\left(\frac{A}{2}\right) \sin\left(\frac{C}{2}\right) = \sin\left(\frac{B}{2}\right) \] We also know that \( 2s \) is the perimeter of triangle ABC, where \( s = \frac{a + b + c}{2} \). 2. **Use the Half-Angle Formula**: The half-angle formulas for sine in terms of the sides of the triangle are: \[ \sin\left(\frac{A}{2}\right) = \sqrt{\frac{s(s-a)}{bc}}, \quad \sin\left(\frac{B}{2}\right) = \sqrt{\frac{s(s-b)}{ac}}, \quad \sin\left(\frac{C}{2}\right) = \sqrt{\frac{s(s-c)}{ab}} \] 3. **Substitute the Half-Angle Formulas into the Given Equation**: Substitute the formulas into the equation: \[ \sqrt{\frac{s(s-a)}{bc}} \cdot \sqrt{\frac{s(s-c)}{ab}} = \sqrt{\frac{s(s-b)}{ac}} \] 4. **Simplify the Equation**: Squaring both sides to eliminate the square roots gives: \[ \frac{s(s-a)(s-c)}{bc} \cdot \frac{s(s-b)}{ac} = \frac{s(s-b)}{ac} \] This simplifies to: \[ s(s-a)(s-c) = s(s-b) \] 5. **Assuming \( s \neq 0 \)**: We can divide both sides by \( s \): \[ (s-a)(s-c) = (s-b) \] 6. **Expand the Left Side**: Expanding the left side gives: \[ s^2 - (a+c)s + ac = s - b \] 7. **Rearranging the Equation**: Rearranging gives: \[ s^2 - (a+c+1)s + (ac + b) = 0 \] 8. **Using the Quadratic Formula**: We can apply the quadratic formula \( s = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \) where \( A = 1, B = -(a+c+1), C = ac + b \). 9. **Finding the Value of \( s \)**: However, we can also directly solve from the earlier simplification: \[ s - a - c = 0 \implies s = a + c \] Thus, substituting \( s = a + b + c \) gives: \[ s = 2b \] 10. **Final Answer**: Therefore, the value of \( s \) is: \[ s = 2B \] ### Conclusion: The correct answer is \( s = 2B \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practise|44 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos

Similar Questions

Explore conceptually related problems

Delta ABC,abc sin((A)/(2))sin((B)/(2))sin((C)/(2))=

In any triangle ABC, show that: 2a sin((B)/(2))sin((C)/(2))=(b+c-a)sin((A)/(2))

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

In triangle ABC , prove that sin(A/2)+sin(B/2)+sin(C/2)le(3)/(2) .

In Delta ABC , if : sin(A/2) .sin (C/2) = sin (B/2) then : semiperimeter s =

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

Ina triangle ABC (sin A) / (2) (sin B) / (2) (sin C) / (2) <= (1) / (8)

"In triangle ABC " "c(sin^(2)A+sin^(2)B)=sin C(a sin A+b sin B)

In a triange ABC, if sin(A/2) sin (B/2) sin(C/2) = 1/8 prove that the triangle is equilateral.