Home
Class 12
MATHS
Prove that tan^(-1)((cosx-sinx)/(cosx+si...

Prove that `tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi`.

A

`-x`

B

`x`

C

`(pi)/(4)-x`

D

`(pi)/(4)+x`.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practise|44 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((cosx+sinx)/(cos x-sinx))

Find- tan^-1((cosx+sinx)/(cosx-sinx))

Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x .

tan^(-1) ((cosx - sinx)/(cosx + sinx)) , 0< x < pi

Find- tan^-1[(cosx-sinx)/(cosx+sinx)]

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)

Prove that: tan^(-1){(a cosx-b sinx)/(b cosx+a sinx)} =tan^(-1)((a)/(b))-x

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .